
django-pgfields Documentation
Release 1.2.0

Luke Sneeringer

June 27, 2014

Contents

1 Dependencies & Limitations 3

2 Quick Start 5

3 Getting Help 7

4 License 9

5 Index 11
5.1 Using django-pgfields . 11
5.2 Simple Fields . 12
5.3 Composite Fields . 16
5.4 Miscellaneous . 19
5.5 Settings . 21
5.6 Releases . 22

i

ii

django-pgfields Documentation, Release 1.2.0

This is django-pgfields, a pluggable Django application that adds support for several specialized PostgreSQL fields
within the Django ORM.

django-pgfields will work with Django applications using the PostgreSQL backend, and adds support for:

• Arrays

• Composte Types

• JSON

• UUIDs

Contents 1

django-pgfields Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Dependencies & Limitations

django-pgfields depends on:

• Python 2.7+ or 3.3+ (Python 2.6 probably works, but is not explicitly tested against.)

• Django 1.5+

• Psycopg2 2.5+

• six 1.4.1+

3

django-pgfields Documentation, Release 1.2.0

4 Chapter 1. Dependencies & Limitations

CHAPTER 2

Quick Start

In order to use django-pgfields in a project:

• Installation

– pip install django-pgfields

– Add django_pg to your settings.INSTALLED_APPS.

• Usage

– Essentially: Import our models module instead of the stock Django module. So, replace from
django.db import models with from django_pg import models.

– The new field classes provided by django_pg are now available on the models module.
Use, for instance, models.UUIDField and models.ArrayField just as you would use
models.CharField.

5

django-pgfields Documentation, Release 1.2.0

6 Chapter 2. Quick Start

CHAPTER 3

Getting Help

If you think you’ve found a bug in django-pgfields itself, please post an issue on the Issue Tracker.

For usage help, you’re free to e-mail the author, who will provide help (on a best effort basis) if possible.

7

https://github.com/lukesneeringer/django-pgfields/issues

django-pgfields Documentation, Release 1.2.0

8 Chapter 3. Getting Help

CHAPTER 4

License

New BSD.

9

django-pgfields Documentation, Release 1.2.0

10 Chapter 4. License

CHAPTER 5

Index

5.1 Using django-pgfields

Using django-pgfields’ extension to the Django ORM is fairly straightforward. You don’t need to use a custom backend
(indeed, django-pgfields does not provide one).

5.1.1 Instructions

The short version of usage is that in order to use the features that django-pgfields adds, you need to do two things.

Add django_pg to INSTALLED_APPS

First, you must add django_pg to your settings module’s INSTALLED_APPS:

INSTALLED_APPS = [
your other apps
’django_pg’,

]

It doesn’t matter where in the list you add it, as long as it’s present.

from django_pg import models

Second, import django-pgfields’ models module instead of the one supplied by Django.

So, everywhere that you would write this:

from django.db import models

Instead, write this:

from django_pg import models

Internally, django-pgfields loads all of the things provided by the Django models module, subclassing certain items
needed to make everything work, and adding the fields it provides.

11

django-pgfields Documentation, Release 1.2.0

5.1.2 Explanation

Django provides a rich ORM with a valuable and customizable QuerySet API. One aspect of this ORM is a high
wall of separation between the use of data in your application (such as the Python objects that are assigned to model
instance attributes) and the actual SQL that is generated to perform operations, which additionally also changes to
account for the fact that Django ships with four backends (and several more are available).

One consequence of this design is that Field subclasses have a somewhat restricted set of overridable bits. In particular,
they can’t (easily) touch the representation of database field names or operators. This is delegated to the backend and
to a series of specialized classes which are responsible for generating various pieces of the final SQL query.

The ultimate choreographer of this complex dance is the Manager class. The Manager class instantiates the
QuerySet class, which in turn instantiates internal classes such as WhereNode and SQLExpression which
are ultimately responsible for taking your querysets and constructing actual queries suitable for your backend. Field
classes have a very defined (and limited) role in this dance, to avoid breaking down the wall between the different
segments of logic.

Complex fields like ArrayField and CompositeField are non-trivial, and aren’t use cases covered by Django’s
stock query construction classes. Therefore, in order for them to function correctly, these classes must be subclassed.

Importing your models module from django_pg instead of from django.db means that you get django-pgfields’ sub-
classes of Model and Managerwhich enable this extra functionality, as well as providing additional (optional) hooks
for other Field subclasses.

5.2 Simple Fields

django-pgfields exposes several new fields corresponding to data types available in PostgreSQL that are not available
in other databases supported by Django.

These fields are available on the django_pg.models module (see Using django-pgfields for more on this).

5.2.1 Array Field

PostgreSQL supports an array datatype. This is most similar to arrays in many statically-typed languages such as C
or Java, in that you explicitly declare that you want an array of a specific type (for instance, an array of integers or an
array of strings).

django-pgfields exposes this by having the array field accept another field as its initial argument (or, alternatively, by
using the of keyword argument).:

from django_pg import models

class Hobbit(models.Model):
name = models.CharField(max_length=50)
favorite_foods = models.ArrayField(models.CharField(max_length=100))
created = models.DateTimeField(auto_now_add=True)
modified = models.DateTimeField(auto_now=True)

This will create an array of strings in the database (to be precise: character varying(100) []). Assignment
of values is done using standard Python lists:

pippin = Hobbit.objects.create(
name=’Peregrin Took’,
favorite_foods=[’apples’, ’lembas bread’, ’potatoes’],

)

12 Chapter 5. Index

https://docs.djangoproject.com/en/dev/topics/db/managers/

django-pgfields Documentation, Release 1.2.0

As a note, do not attempt to store a full list of any hobbit’s favorite foods. Your database server does not have sufficient
memory or swap space for such a list.

Lookups

When looking up data against an array field, the field supports three lookup types: exact (implied), contains, and
len.

exact

The exact lookup type is the implied lookup type when doing a lookup in the Django ORM, and does not need to be
explicitly specified. A straight lookup simply checks for array equality. Continuing the example immediately above:

>>> hobbit = Hobbit.objects.get(
favorite_foods=[’apples’, ’lembas bread’, ’potatoes’],

)
>>> hobbit.name
’Peregrin Took’

contains

The contains lookup type checks to see whether all of the provided values exist in the array. If you only need to
check for a single value, and the value is not itself an array (in a nested case, for instance), you may specify the lookup
value directly:

>>> hobbit = Hobbit.objects.get(favorite_foods__contains=’apples’)
>>> hobbit.name
’Peregrin Took’

If you choose to do a contains lookup on multiple values, then be aware that order is not relevant. The database
will check to ensure that each value is present, but ignore order of values in the array altogether:

>>> hobbit = Hobbit.objects.get(
favorite_foods__contains=[’lembas bread’, ’apples’],

)
>>> hobbit.name
’Peregrin Took’

len

The len lookup type checks the length of the array, rather than its contents. It maps to the array_length function in
PostgreSQL (with the second argument set to 1).

Such lookups are simple and straightforward:

>>> hobbit = Hobbit.objects.get(favorite_foods__len=3)
>>> hobbit.name
’Peregrin Took’

Warning: In versions of django-pgfields prior to 1.4.3, using 0 as a value here was broken; it is fixed in 1.4.3.

5.2.2 JSON Field

PostgreSQL 9.2 added initial support for a JSON data type. If you wish to store JSON natively in PostgreSQL, use the
JSONField field:

5.2. Simple Fields 13

http://www.postgresql.org/docs/9.2/static/functions-array.html#ARRAY-FUNCTIONS-TABLE

django-pgfields Documentation, Release 1.2.0

from django_pg import models

class Dwarf(models.Model):
name = models.CharField(max_length=50)
data = models.JSONField()
created = models.DateTimeField(auto_now_add=True)
modified = models.DateTimeField(auto_now=True)

If you’re using a version of PostgreSQL earlier than 9.2, this field will fall back to the text data type.

Warning: As of PostgreSQL 9.2, storing JSON is fully supported, but doing any useful kind of lookup (including
direct equality) on it is not.
As such, django-pgfields supports storing JSON data, and will return the JSON fields’ data to you when you lookup
a record by other means, but it does not support any kind of lookup against JSON fields. Attempting any lookup
will raise TypeError.

Options

The JSON field implements the following field options in addition to the field options available to all fields.

type

The type option adds an additional requirement that any value sent to this field must be of that type. The default is
None, which will allow any type that is JSON-serializable.

Usage looks like:

data = models.JSONField(type=dict)

Acceptable values for this option are: dict, list, str/unicode (see below), int, float, and bool.

The common use case for this option is to allow code to expect a particular type of value from this field (dict is the
most common need).

If you specify this option, an appropriate empty default value of that type will automatically be set. Therefore, the
example above is exactly equivalent to:

data = models.JSONField(type=dict, default={})

Note: If you want to require a string value (to be honest, I can’t think of any reason to do this rather than just use
TextField), you’ll need to specify the correct text type for the version of Python you’re using. If you’re on Python
3, use str; if you’re on Python 2, use unicode.

Values

The JSON field will return values back to you in the Python equivalents of the native JavaScript types:

• JavaScript number instances will be converted to int or float as appropriate.

• JavaScript array instances will be converted to Python list instances, and value conversion will be recur-
sively applied to every item in the list.

• JavaScript object instances will be converted to Python dict, and value conversion will be recursively
applied to the keys and values of the dictionary.

• JavaScript string instances will be converted to Python 3 str.

14 Chapter 5. Index

https://docs.djangoproject.com/en/dev/ref/models/fields/#field-options\T1\textgreater {}{}`.

django-pgfields Documentation, Release 1.2.0

• JavaScript boolean instances will be converted to Python bool.

• JavaScript null is converted to Python None.

• JavaScript special values (NaN, Infinity) are converted to their Python equivalents. Use math.isnan and
math.isinf to test for them.

Note: Because field subclasses are called to convert values over and over again, there are a few cases where the
conversion is not idempotent. In particular, strings that are also valid JSON (or look sufficiently close to valid JSON)
will be deserialized again.

The short version: write Python dictionaries, lists, and scalars, and the JSON field will figure out what to do with it.

5.2.3 UUID Field

In order to store UUIDs in the database under the PostgreSQL UUID type, use the UUIDField field:

from django_pg import models

class Elf(models.Model):
id = models.UUIDField(auto_add=True, primary_key=True)
name = models.CharField(max_length=50)
created = models.DateTimeField(auto_now_add=True)
modified = models.DateTimeField(auto_now=True)

Options

The UUID field implements the following field options in addition to the field options available to all fields.

Note: The UUID field interprets and writes blank values as SQL NULL. Therefore, setting blank=True requires
null=True also. Setting the former but not the latter will raise AttributeError.

auto_add

Note: If you’re using Django 1.7 or higher and the new Django migration system (not South), you probably don’t
need auto_add. Simply use default=uuid.uuid4 to get the same effect.

If you’re using South, however, you probably do want auto_add, so this feature will remain in place for the forsee-
able future.

Normally, the UUIDField works like any other Field subclass; you are expected to provide a value, and the value is
saved to the database directly.

If auto_add=True is set, then explicitly providing a value becomes optional. If no value is provided, then the field
will auto-generate a random version 4 UUID, which will be saved to the database (and assigned to the model instance).

This is a particularly useful construct if you wish to store UUIDs for primary keys; they’re a completely acceptable
substitute for auto-incrementing integers:

>>> legolas = Elf(name=’Legolas Greenleaf’)
>>> legolas.id
’’
>>> legolas.save()
>>> legolas.id
UUID(’b1f12115-3337-4ec0-acb9-1bcf63e44477’)

5.2. Simple Fields 15

https://docs.djangoproject.com/en/dev/ref/models/fields/#field-options\T1\textgreater {}{}`.
http://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_.28random.29

django-pgfields Documentation, Release 1.2.0

As of django-pgfields 1.4, it is also possible to use auto_add to generate a UUID using an algorithm other than
uuid.uuid4. Instead of sending in True, send in any callable which takes no arguments and reliably returns a
UUID.

For instance, the following field instantiation would cause a version 1 UUID to be used instead:

from django_pg import models
import uuid

id = models.UUID(auto_add=uuid.uuid1, primary_key=True)

coerce_to

By default, the to_python method on UUIDField will coerce values to UUID objects. Setting this option will use
a different class constructor within to_python.

The general use-case for this is if you want to get strings instead of UUID objects. The following example would be
the output in the case that you assigned coerce_to=str:

>>> legolas = Elf(name=’Legolas Greenleaf’)
>>> legolas.save()
>>> legolas.id
’b1f12115-3337-4ec0-acb9-1bcf63e44477’

Values

The UUID field will return values from the database as Python UUID objects.

If you choose to do so, you may assign a valid string to the field. The string will be converted to a uuid.UUID object
upon assignment to the instance:

>>> legolas = Elf(name=’Legolas Greenleaf’)
>>> legolas.id = ’01234567-abcd-abcd-abcd-0123456789ab’
>>> legolas.id
UUID(’01234567-abcd-abcd-abcd-0123456789ab’)
>>> type(legolas.id)
<class ’uuid.UUID’>

Lookups can be performed using either strings or Python UUID objects.

5.3 Composite Fields

In addition to a generous set of built-in field types, PostgreSQL allows for the definition of custom fields on a per-
schema level. Composite fields are simply custom fields that are composites of an ordered list of key names and field
types already provided by PostgreSQL.

Composite fields come with a few limitations compared to standard tables. They can’t have constraints of any kind,
making them a poor choice for anything requiring a foreign key. Similarly, if you’re doing lookups based on a
composite field, you should know precisely what you’re doing.

If you aren’t familiar with PostgreSQL composite fields and want to understand more about them, you should consult
the PostgreSQL composite fields documentation before continuing on.

16 Chapter 5. Index

http://docs.python.org/3/library/uuid.html
http://www.postgresql.org/docs/9.2/static/rowtypes.html

django-pgfields Documentation, Release 1.2.0

5.3.1 Defining Composite Fields in the ORM

The representation of composite fields in the ORM using django-pgfields should be remarkably similar to the repre-
sentation of models themselves, since they’re conceptually quite similar.

Differences from Model subclasses

A few things differ between models and composite fields:

• Composite fields inherit from django_pg.models.CompositeField rather than
django.db.models.Model.

• Composite fields do not get an id field by default, and do not need one.

• Composite fields may not contain any subclass of django.db.models.RelatedField. This includes
ForeignKey, OneToOneField, or ManyToManyField fields.

• Any constraints provided to composite fields will be ignored at the database level.

– Exception: max_length sent to CharField. This is part of the type definition, and is still required.

• Most Meta options no longer have any meaning, and a new Meta option (db_type) is available to composite
fields.

• Composite fields can’t do lookups based on a single key in the composite field. PostgreSQL has this ability, but
it’s not yet implemented in django-pgfields.

Type Definition Example

With these differences in mind, creating a composite field is straightfoward and familiar:

from django_pg import models

class AuthorField(models.CompositeField):
name = models.CharField(max_length=75)
sex = models.CharField(max_length=6, choices=(

(’male’, ’Male’),
(’female’, ’Female’),

))
birthdate = models.DateField()

Once the subclass is defined, it can be used within a model like any other field:

class Book(models.Model):
title = models.CharField(max_length=50)
author = AuthorField()
date_published = models.DateField()

Meta Options

db_type

All types in PostgreSQL have a name to identify them, such as text or int. Your custom type must also have a
name.

If you don’t provide one, django-pgfields will introspect it from the name of the class, by converting the class name to
lower-case, and then stripping off "field" from the end if it’s present. So, in the example above, our AuthorField
would create an author type in the schema.

5.3. Composite Fields 17

django-pgfields Documentation, Release 1.2.0

You may choose to provide one by specifying db_type in the field’s inner Meta class:

class AuthorField(models.CompositeField):
name = models.CharField(max_length=75)
sex = models.CharField(max_length=6, choices=(

(’male’, ’Male’),
(’female’, ’Female’),

))
birthdate = models.DateField()

class Meta:
db_type = ’ns_author’

Manual specification of the composite type’s name is recommended, if only so that they’re namespaced (to a degree).
You don’t want your type name to conflict with some new type that PostgreSQL may add in the future, after all.

5.3.2 Assigning Values to Composite Fields

The presence of any composite field entails the need to write data to the model instance containing that field. There
are two ways to go about this: by using a tuple, or by using a special “instance class” created when you instantiate the
field subclass.

Tuples

In many simple circumstances, the quickest way to assign values is to use a tuple. PostgreSQL accepts its write values
to composite fields in a tuple-like structure, with values provided in a specified order (the order of the fields) and keys
omitted.

This is a legal way to assign an author to a book:

>>> hobbit = Book(title=’The Hobbit’, date_published=date(1937, 9, 21))
>>> hobbit.author = (’J.R.R. Tolkien’, ’male’, date(1892, 1, 3))
>>> hobbit.save()

Composite Instances

The above method works fine in simple cases, but isn’t great for more complex ones, especially since tuples are
immutable. Fortunately, there’s a solution. Whenever a composite field is created, a “composite instance” class is
created alongside of it, and is available under the instance_class property of the field.

This example is identical in function to the tuple example shown above:

>>> hobbit = Book(title=’The Hobbit’, date_published=date(1937, 9, 21))
>>> hobbit.author = AuthorField.instance_class(

birthdate=date(1892, 1, 3),
name=’J.R.R. Tolkien’,
sex=’male’,

)
>>> hobbit.save()

The actual name of the instance class is derived from the name of the field, by dropping the name Field (if present)
from the field name’s subclass. If the instance name does not conflict with the field name, it is automatically assigned
to the same module in which the instance was created.

In the above example, assuming that AuthorField was defined in the library.models module, we’d be able
to do this:

18 Chapter 5. Index

django-pgfields Documentation, Release 1.2.0

>>> from library.models import Book, Author
>>> hobbit = Book(title=’The Hobbit’, date_published=date(1937, 9, 21))
>>> hobbit.author = Author(

birthdate=date(1892, 1, 3),
name=’J.R.R. Tolkien’,
sex=’male’,

)
>>> hobbit.save()

5.3.3 Accessing Composite Values

When values are being read, a composite instance is always used, never a tuple. If a tuple is required, it can be
explicitly typecast.

Composite values access their individual fields as attributes, just like subclasses of Model:

>>> hobbit = Book.objects.get(title=’The Hobbit’)
>>> hobbit.author.name
’J.R.R. Tolkien’
>>> hobbit.author.birthdate
date(1892, 1, 3)

5.4 Miscellaneous

Miscellaneous features provided by django-pgfields that are not actually PostgreSQL-related fields.

5.4.1 Improved Repr

django-pgfields adds an optional, opt-in improved __repr__ method on the base Model class.

The default __repr__ implementation on the Model class simply identifies the model class to which the instance
belongs, and does nothing else:

>>> mymodel = MyModel.objects.create(spam=’eggs’, foo=’bar’)
>>> mymodel
<MyModel: MyModel object>

The improved __repr__ implementation that django-pgfields provides iterates over the fields on the model and
prints out a readable structure:

>>> mymodel = MyModel.objects.create(spam=’eggs’, foo=’bar’)
>>> mymodel
<MyModel: { ’id’: 1, ’spam’: ’eggs’, ’foo’: ’bar’ }>

This is more useful for debugging, logging, and working on the shell.

Settings

django-pgfields exposes this functionality through optional settings in your Django project.

DJANGOPG_IMPROVED_REPR

• default: False

5.4. Miscellaneous 19

django-pgfields Documentation, Release 1.2.0

Set this to True to enable the improved repr. Because providing an alternate __repr__ implementaiton is not the
core function of django-pgfields, it is offered on an opt-in basis.

DJANGOPG_REPR_TEMPLATE

• default: ’single_line’

django-pgfields offers two built-in templates for printing model objects: a single-line template and a multi-line tem-
plate. They are the same, except the model-line template adds line breaks and indentation for increased readability.
However, this readability may come at the expense of ease of parsing logs.

• Set this to ’single_line’ for the single-line template (default).

• Set this to ’multi_line’ for the multi-line template.

The single-line template produces output like this:

>>> mymodel = MyModel.objects.create(spam=’eggs’, foo=’bar’)
>>> mymodel
<MyModel: { ’id’: 1, ’spam’: ’eggs’, ’foo’: ’bar’ }>

The multi-line template produces output like this:

>>> mymodel = MyModel.objects.create(spam=’eggs’, foo=’bar’)
>>> mymodel
<MyModel: {

’id’: 1,
’spam’: ’eggs’,
’foo’: ’bar’

}>

Additionally, you may define your own template by providing a two-tuple to this setting. Each tuple should be a string.
The first string is the overall template, and the second string is the glue on which the individual fields are joined.

The template is populated using the % operator, and it is passed a dictionary with four elements:

• class_name: The name of the model class

• members: The model’s members, joined on the join glue

• tab: The appropriate tab depth

• untab: The appropriate tab depth for a depth one above; useful for closing off a structure

The glue is sent only the tab variable.

5.4.2 Improved select_related and prefetch_related

django-pgfields adds select_related and prefetch_related as options that can be specified in the Meta
inner class on a model. This allows a developer to gain the database efficiency of these methods if he knows that he
will always want this or that related object.

The syntax is thus:

from django_pg import models

class MyModel(models.Model):
my_other_model = models.ForeignKey(MyOtherModel)

class Meta:
select_related = ’my_other_model’

20 Chapter 5. Index

django-pgfields Documentation, Release 1.2.0

If more than one field should be included, select_related can be specified as an iterable:

class Meta:
select_related = (’foo’, ’bar’)

This will automatically cause querysets returned from Manager.get_queryset to apply the appropriate
select_related call.

Note that while all of the above examples use select_related, this same syntax also works for
prefetch_related.

5.4.3 Improved DateTimeField

django-pgfields provides a subclass of DateTimeField as of 1.4.2. This has identical functionality to the model
provided in Django, with one addition: it will accept an integer (UNIX timestamp) if it is given one.

5.5 Settings

django-pgfields provides several settings, which will customize its operation.

5.5.1 DJANGOPG_CUSTOM_MANAGER

• default: None

django-pgfields 1.0 builds on previous versions of django-pgfields by providing two Manager classes, one which
subclasses the vanilla Django Manager, and another which subclasses the GeoManager provided with Django’s GIS
application, GeoDjango.

django-pgfields will automatically introspect which of these to use by looking at the backend of the default database
in your database settings.

However, if that result isn’t what you want, or if you want a custom manager to be applied across-the-board to all
models that subclass django_pg.models.Model, then set this to the particular Manager subclass that you’d like.

You can do this by either providing the full module and class path as a string, or by providing the class directly.

5.5.2 DJANGOPG_IMPROVED_REPR

• default: False

Set this to True to enable the improved repr. Because providing an alternate __repr__ implementaiton is not the
core function of django-pgfields, it is offered on an opt-in basis.

See the improved repr documentation for more details.

5.5.3 DJANGOPG_REPR_TEMPLATE

• default: ’single_line’

Sets the template that is used by the improved repr provided by django-pgfields. See the improved repr documentation
for more details.

5.5. Settings 21

django-pgfields Documentation, Release 1.2.0

5.5.4 DJANGOPG_DEFAULT_UUID_PK

• default: False

If set to True, this will cause models to get a UUID as their default primary key if none is specified, rather than an
auto-incrementing integer.

Note that this does not currently work on ManyToManyField instances that are automatically generated, as they
inherit from django.db.models.Model.

5.6 Releases

This page contains release notes for django-pgfields. Consult the release notes to read about new features added in
each release, and to be aware of any backwards incompatible changes.

5.6.1 django-pgfields 1.4

Welcome to django-pgfields 1.4!

Overview

This release builds on django-pgfields by adding support for requiring a specific type on JSONField, and for allowing
arbitrary callables for generating UUIDs automatically on UUIDField.

Features

• The JSONField class now allows you to send a type argument, along with a class that is JSON serializable,
such as dict or list. Use this to require that the root value of a JSONField always be a particular type.

• The UUIDField class now accepts a callable as the value of auto_add (sending True still works). If
specified, this callable will be used to generate new UUIDs. Any callable that takes no arguments and reliably
returns a UUID is acceptable.

Minor Releases

• As of 1.4.2, django-pgfields ships with a DateTimeField subclass that accepts UNIX timestamps as values
(and otherwise behaves exactly like its parent, the stock Django class).

• As of 1.4.3, sending a query to an ArrayField with a __len and value of 0 works. This was broken in prior
releases because it requires special query handling in PostgreSQL (which expects a NULL value).

5.6.2 django-pgfields 1.3

Welcome to django-pgfields 1.3!

Overview

This release builds on django-pgfields by adding support for automatically generated UUID primary keys on most
models, as well as a more convenient way to specify select_related and prefetch_related.

22 Chapter 5. Index

django-pgfields Documentation, Release 1.2.0

Features

• django-pgfields now defines a DJANGOPG_DEFAULT_UUID_PK setting. If set to True (the default is
False), it will cause most models created with no explicitly-specified primary key to get a UUID primary
key field, rather than an auto-incrementing primary key.

• django-pgfields now builds on Django’s default Model by adding support for select_related and
prefetch_related to be specified as options on the Meta inner class.

5.6.3 django-pgfields 1.2

Welcome to django-pgfields 1.2!

Overview

This release builds on django-pgfields 1.1 by adding support for coercing UUID fields to classes other than uuid.UUID.

Features

• UUIDField now supports a coerce_to argument, defaulting to uuid.UUID. The obvious use case for setting
this is if you need to get back str objects instead.

Bugfixes

• django-pgfields 1.2.1 fixes a bug regarding Unicode values within CompositeField subclasses; sending
unicode values will now work.

5.6.4 django-pgfields 1.1

Welcome to django-pgfields 1.1!

Overview

This release builds on django-pgfields 1.0 by adding support for Python 2. django-pgfields now adds six as a depen-
dency, and is fully tested against Python 2.7.

django-pgfields is not tested against Python 2.6 (but it’s likely that it will work under Python 2.6).

Features

• Python 2.7 support.

5.6.5 django-pgfields 1.0

Welcome to django-pgfields 1.0!

5.6. Releases 23

django-pgfields Documentation, Release 1.2.0

Overview

This release is considered the first true, stable release of django-pgfields. It adds sufficient support for tools within the
Django ecosystem (gis, south) to be usable, and all documented aspects of the module should not change at this point,
except to accomodate a substantial change in Django itself.

This release of django-pgfields contains the following major features:

Features

• Added GeoDjango support.

• Added an improved repr implementation to Model.

GeoDjango Support

django-pgfields 1.0 resolves a previously-existing conflict between django-pgfields and GeoDjango
(django.contrib.gis).

Because both django-pgfields and GeoDjango implement their additional features by subclassing several classes within
Django itself, it wasn’t possible to use both of them.

django-pgfields 1.0 removes this limitation by introspecting your database backend setting and assigning to models an
appropriate Manager class. So, if you are using the django.contrib.gis.db.backends.postgis backend,
you’ll get our GeoManager subclass (without having to specify anything!), while if you’re using the vanilla Django
PostgreSQL backend, you’ll get our Manager subclass.

This functionality is provided across-the-board. However, if our introspection gets it wrong, you can define a
DJANGOPG_DEFAULT_MANAGER setting, which will be applied to all models in lieu of django-pgfields’ introspec-
tion. This is easier than manually assigning a manager to every model.

Improved Repr

django-pgfields 1.0 provides an improved __repr__ implementation on the base Model, from which your models
inherit.

As this is not the core mission of django-pgfields, this functionality is provided on an opt-in basis, and will only be
activated if you set a particular setting.

For more information, see the improved repr documentation.

Minor Improvements

• If auto_add=True is set on a UUID field, it now implies editable=False. This makes it behave as much
like AutoField as possible, since a primary key replacement is one of the most likely reasons to use auto_add
at all.

• When using an ArrayField, any item that is added to the list is automatically coerced to the sub-field’s
format.

• When a value for a CompositeField subclass is being coerced to the appropriate Python type, all sub-items
are coerced as well.

• When using a CompositeField, any item that is added to a key of the field is automatically coerced to that
key’s format.

24 Chapter 5. Index

django-pgfields Documentation, Release 1.2.0

5.6.6 django-pgfields 0.9.2

Welcome to django-pgfields 0.9.2!

Overview

This release of django-pgfields contains the following major features:

• South Support

• JSON Field

Features

South Support

django-pgfields 0.9.2 adds out-of-the-box support for South, the popular migrations application for Django. With this
release, all fields provided by django-pgfields are given appropriate introspection rules for South.

This also applies to any subclasses of CompositeField, which are given automatic introspection rules. This does
not examine your subclass, however, so it is your responsibility to add introspection rules if your subclass takes
constructor arguments.

Note: South migrations using ArrayField were broken in django-pgfields 0.9.2; while the initial migration including
the ArrayField would run, subsequent migrations would not. This has been corrected and a subsequent release, django-
pgfields 0.9.2.1, issued.

JSON Field

django-pgfields 0.9.2 adds a new field for storing JSON in the database. The new JSONField is capable of taking
Python objects that serialize into JSON (such as lists, dicts, booleans, and strings) and storing the JSON representation.

This feature makes use of the new JSON data type introduced in PostgreSQL 9.2. On earlier versions of PostgreSQL,
it will fall back to the text type.

More information is available on the Fields documentation page.

5.6. Releases 25

http://south.aeracode.org/
http://south.readthedocs.org/en/latest/customfields.html#rules

	Dependencies & Limitations
	Quick Start
	Getting Help
	License
	Index
	Using django-pgfields
	Simple Fields
	Composite Fields
	Miscellaneous
	Settings
	Releases

